
XPORTA Project Final Evaluation

Introduction
The goal of this project has been to improve the portability of user accounts between
different XMPP services and software. In the previous phase of DAPSI, we successfully
created and updated the relevant standards specifications needed to achieve this. We also
began work on implementations of these new standards.

During the second phase, we have successfully improved the Prosody XEP-0227
implementation and we’ve built a friendly user interface in Snikket to access it and allow
users to export and import their account data in the self-service account dashboard.

We can also report that other projects than ours have also now implemented the
specifications too, notably ejabberd1.

Design and approach
Prosody is the core component that powers the Snikket chat solution. In particular, it is the
component where all a user’s data is managed and stored. We developed an API plugin for
Prosody that allows a user to request their data in XEP-0227 format using a HTTP REST
API.

Upon clicking the ‘Export’ button, the Snikket web interface connects to this API to download
a user’s data in XEP-0227 format, and sends it to the user’s browser as an XML file
download.

Next we built the import functionality into the user onboarding process. As soon as a user
registers an account successfully, we show them the option to import any existing data they
may have (e.g. from a previous XMPP account). If the user chooses to upload a file, the web
interface performs some minor validation and then forwards the uploaded XML data to
Prosody via the API so the data can be imported into the new user’s account.

Testing methods

Verifying correctness
When handling data, correctness is one of the most important aspects to the user. We want
to ensure that if someone exports and then imports their data, it will not have been
unexpectedly changed in any way. Such changes are to be considered bugs, and are easily
introduced during data transformation if no tests are in place. Therefore we performed
end-to-end testing of an export and import cycle.

1 https://github.com/processone/ejabberd/issues/3676

1/5

https://github.com/processone/ejabberd/issues/3676


The following 4 steps were taken for these tests:

1. Generate realistic test users (we used existing tooling for this).
2. Export the user data as XML in XEP-0227 format using our new export

implementation.
3. Create a new (empty) account and import the data from the XML file using our new

import implementation.
4. Check for differences between the original data structures and the data stored for the

new user. structures after import to those of the original data. We found and fixed two
bugs in our original implementation using this method.

Measuring performance
Although correctness is important, and import/export operations are not expected to happen
very often during the lifecycle of a user account, we wanted to ensure that our
implementation behaved within reasonable expectations. We determined to measure the
average CPU, RAM and wall clock time required by data import and export operations.

For testing, we generated 1000 accounts with realistic test data and performed a bulk
migration to XEP-0227 format, and then back again.

Operation Peak RAM CPU time Elapsed time

Export 1000 users 18.69 MB 9.19s 9.77s

Import 1000 users 19.70 MB 14.02s 14.52s

With per-user import/export operations measured in fractions of a second, we were happy
with these results.

As a final check, we inspected the resulting file size of the XEP-0227 XML export files. For
our test accounts (which are designed to be representative of typical users, such as avatars,
contacts and other data) the output file sizes ranged from 20KB to 40KB file size.

Interoperability with other implementations
Now that other implementations have begun to implement the updated XEP-0227 standard,
we were finally able to test cross-implementation interoperability. We obtained an XML data
export from another new implementation (ejabberd by Process One). We imported this data
to Prosody using our import code, and were able to successfully verify the user data import
succeeded as expected.

2/5



Security and privacy considerations
After reviewing the implementation and a risk assessment of the final project, we decided to
selectively disable the self-service export of some user data. Specifically we disabled the
ability to export a user’s credentials (even though these are hashed, an attacker could
subject them to an offline dictionary/brute-force attack) and we disabled export of a user’s
message history as this may contain sensitive information and metadata. These choices
were made to limit the potential data exposure from a successful Cross-Site Request
Forgery, or from a user account compromise.

With consideration to the requirements of the GDPR, a Snikket operator has the ability to
generate a full export on behalf of a user, upon request. Indeed, our work makes it far easier
for XMPP service operators to comply with GDPR requests from their users, as previously
no suitable standard data format was available in which to send the data.

Final summary
Over the course of this project we have achieved the following:

● Developed and published new standard data formats and protocols for account
portability in XMPP.

● Implemented support for these formats and protocols in Prosody, a widely deployed
XMPP protocol server.

● Tested interoperability of our implementation with an independent implementation
(ejabberd) of the standards we developed.

● Developed an independent web migrator prototype in Javascript that allows any
XMPP user to convert their account data to and from an XEP-0227 XML file,
regardless of server support for the new standard.

● Added support for exporting and importing user account data in Snikket, a modern
open-source self-hostable chat solution based on Prosody and XMPP.

We are very grateful to NGI DAPSI for supporting this project and allowing us the funding
and resources necessary to design and complete it.

3/5



Appendix: Links and resources

XMPP Account Portability (XPORTA)
Information and links related to this project.

● Project homepage: https://docs.modernxmpp.org/projects/portability/

Standards documents
Documents we have created/updated as part of this project.

● XEP-0227: Portable Import/Export Format for XMPP-IM Servers
Published at: https://xmpp.org/extensions/xep-0227.html
Pull request: https://github.com/xsf/xeps/pull/1064

● XEP-0283: Moved
Published at: https://xmpp.org/extensions/xep-0283.html
Pull request: https://github.com/xsf/xeps/pull/1071

Implementations
Developed partly or fully as part of this project.

Prosody plugins
Prosody is a module XMPP protocol server. Most of its functionality is implemented through
different plugins, and we developed multiple as part of this project.

● mod_storage_xep0227
Description: A Prosody storage driver that translates between Prosody’s native data
structures and the XEP-0227 XML format.
Documentation: https://prosody.im/doc/modules/mod_storage_xep0227
Source: https://hg.prosody.im/trunk/file/tip/plugins/mod_storage_xep0227.lua

● mod_http_xep227
Description: Provides a HTTP API to import/export user account data in XEP-0227
format (uses mod_storage_xep0227 to perform the translation).
Documentation: https://modules.prosody.im/mod_http_xep227
Source code:
https://hg.prosody.im/prosody-modules/file/541b2cf68e93/mod_http_xep227/mod_htt
p_xep227.lua

● mod_auto_moved
Description: Automatic handling of ‘moved’ notifications received from contacts, as
described in XEP-0283.
Documentation: https://modules.prosody.im/mod_auto_moved
Source code:

4/5

https://docs.modernxmpp.org/projects/portability/
https://xmpp.org/extensions/xep-0227.html
https://github.com/xsf/xeps/pull/1064
https://xmpp.org/extensions/xep-0283.html
https://github.com/xsf/xeps/pull/1071
https://prosody.im/doc/modules/mod_storage_xep0227
https://hg.prosody.im/trunk/file/tip/plugins/mod_storage_xep0227.lua
https://modules.prosody.im/mod_http_xep227
https://hg.prosody.im/prosody-modules/file/541b2cf68e93/mod_http_xep227/mod_http_xep227.lua
https://hg.prosody.im/prosody-modules/file/541b2cf68e93/mod_http_xep227/mod_http_xep227.lua
https://modules.prosody.im/mod_auto_moved


https://hg.prosody.im/prosody-modules/file/f95a1e197a07/mod_auto_moved/mod_au
to_moved.lua

Snikket
Snikket is an open-source project that combines Prosody and other components to create a
modern self-hostable chat solution based on open standards (XMPP). As part of this project
we have incorporated new features.

● Added support for account import/export in Snikket’s Prosody:
https://github.com/snikket-im/snikket-server/pull/113

● Added support for account import/export in Snikket’s web interface:
https://github.com/snikket-im/snikket-web-portal/pull/110

Web migrator (prototype)
This project was not in the original project plan submitted to DAPSI, but developed as an
additional prototype to validate the method and provide an (emergency!) way for users to
export their data from an independent German XMPP service that shut down in July 2021.

● Migrator homepage: https://migrate.modernxmpp.org/
● Source code: https://github.com/snikket-im/xmpp-account-exporter

5/5

https://hg.prosody.im/prosody-modules/file/f95a1e197a07/mod_auto_moved/mod_auto_moved.lua
https://hg.prosody.im/prosody-modules/file/f95a1e197a07/mod_auto_moved/mod_auto_moved.lua
https://github.com/snikket-im/snikket-server/pull/113
https://github.com/snikket-im/snikket-web-portal/pull/110
https://migrate.modernxmpp.org/
https://github.com/snikket-im/xmpp-account-exporter

